
a diminution in aY/~xs of not more than 15%. In this case the system (11)-(12) is easily 
solved graphically, to give the domain of allowable changes in x= and its corresponding con- 
centrations (Fig. 3). The allowable interval of the cuvette temperature change is determined 
easily from (i0): x~ = 1-0.35, which corresponds to T = 45.2 • 4.8~ in natural variables. 
Therefore, the operating regime found for the thermooptical gas analyzer requires • ac- 
curacy in maintaining the magnitude of the flow rate and the heating temperature. 

NOTATION 

T, t empera tu re ;  q, hea t  f l u x ;  R, channel  r a d i u s ;  6, r ,  z, c o o r d i n a t e s ;  r = r /R;  Eo, 

dielectric permittivity of the gas; ~, arc length; ~ = ~ ~-*/2do; ~ = z/R; ~, heat-con- 

0 
duc t ion  c o e f f i c i e n t ;  Re, Reynolds number; Pr ,  P rand t !  number; x i ,  c e o r d i n a t e s  in  f a c t o r  space~ 

II 

2. 
3. 

. 

5. 
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EXISTENCE OF A CLASSICAL VARIATIONAL PRINCIPLE FOR NONLINEAR 

COUPLED HEAT AND MASS TRANSPORT 

Yu. T. Glazunov UDC 536.248:517.972.5 

Using the example of nonlinear coupled heat and mass'transport, we examine whether 
a functional exists for which the required kinetic equations follow from the condi- 
tion that the functional be stationary. 

In nonlinear problems of heat conduction and coupled heat and mass transport, varia- 
tional methods are widely used today. These methods are based on variational formulations 
of the problem, called in physics variational principles. 

In the restricted sense, by a variational principle we mean the statement that a cer- 
tain functional must attain a maximum or minimum [I]. This functional contains all of the 
defining equations and boundary conditions for the problem. Thus, the equations and bound- 
ary conditions follow from the variational formulation as conditions that the functional be 
stationary (the Euler equations). We will refer to this kind of variational formulation as 
a classical variational principle. Examples include Hamilton's principle of least action 
in mechanics [2], Castilyan's principle in the theory of elasticity [3], Fermat's principle 
in optics [4], and certain variational principles in the classical and relativistic theory 
of fields. 

The classical variational formulations are distinguished by simplicity, generality, 
elegance, and are of heuristic value as well. However, attempts a~ obtaining these varia- 
tional principles by fitting a variational equation to a problem previously formulated in 
differential form is difficult and not always successful. This is because many differential 
equations and systems of equations, especially nonlinear ones, do not have classical varia- 
tional principles. 
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Since nonlinear problems in engineering physics are important in applications, we dis- 
cuss a method of determining the existence of a classical variational principle for this 
type of problem. Specifically, we consider the example of nonlinear unsteady coupled heat 
and mass transport. 

We consider coupled heat and mass transport in a medium of volume v, bounded by a sur- 
face S. Takin~ Cq, Cm, y, p = const, we have 

~ - ~ r~ (~1, ~ ) ,  z,,~ = ~,,~ F~ (~ ,  o~), ~ ~, ~*f~ 01,  o~), 

~ 8*F~ (~ ,  o~). 

In this case the system of equations for coupled heat and mass transport [5] can be put 
in the form 

@1,4 = (F10, .~),= - -  Ko* F802,4, (1) 

O2,4 = - -  Lu Pn (F2F~O ~. ~),~ 4- Lu (F~O2,~),~, 

and t h e  b o u n d a r y  c o n d i t i o n s  a r e  w r i t t e n  as  

@~(P, 0)= Mz(P) (PCv), (2) 

o~(p, t) = ~ . ( P ,  0 (PEs3,  (3) 

n~O~,~(P, t )=@~2 (P, t) (PES2), (4) 

n~O~,~(P, t)= O~3[O~(P, t), @2(P, O] (PES~, (5) 

where S1US~US3 = S; Hi, ~i, v are known functions. 

Equation (2) is the initial condition, (3) and (4) are boundary conditions of the first 
and second kinds, and (5) is a boundary condition of the third kind. 

In order to determine whether a classical variational principle exists for equations (I)- 
(5), we use the general approach of [6]. Let 

N(O) = 0 (6) 

r e p r e s e n t  t h e  d i f f e r e n t i a l  s t a t e m e n t  o f  t h e  p r o b l e m .  The o p e r a t o r  N i s  c a l l e d  p o t e n t i a l  i f  
t h e r e  e x i s t s  a f u n c t i o n a l  ( p o t e n t i a l )  I such  t h a t  

grad I = N (0). (7) 

The d i f f e r e n t i a t i o n  on t h e  l e f t - h a n d  s i d e  o f  (7) i s  assumed t o  be  in  t h e  s e n c e  o f  a Gato 
d e r i v a t i v e  ( t h e  d i f f e r e n t i a t i o n  o f  a f u n c t i o n a l  I (O)  i s  d e f i n e d  as  [7] I ~ ( O +  ~ ) [ ~ = o  and 
t h i s  r e d u c e s  to  t h e  d e f i n i t i o n  o f  t h e  v a r i a t i o n  ~ I ) .  Then t h e  e x p r e s s i o n  g r a d  I = 0 g i v e s  
t h e  E u l e r  e q u a t i o n s ,  where  t h e  f u n c t i o n a l  i s  r e p r e s e n t e d  as  [6] 

l 

l (0) = ( O ,[. N (%O) d%da, (8) 
o 

so that the variational principle has the form 81 = 0. Here ~ is a scalar and ~ is the physi- 
cal region under consideration (the region where the functions @ are defined). Whether N is 
potential or not depends on whether the Gato derivative is syn~netric or not. If the Gato 
derivative is symmetric, then a classical variation principle follows at once in form (8). 
The symmetry of the Gato derivative can be tested in our case with the help of certain con- 
ditions. A necessary condition for the Gato derivative to be symmetric is that the leading 
derivative in the equations [6] be even. We see immediately that the boundary conditions 
(2)-(5) do not satisfy this requirement and therefore they cannot be derived from the func- 
tional (8) as boundary conditions for the problem. Equation (I) has even-order leading 
derivatives, hence we examine the possibility of constructing a functional (8) for these 
equations without the boundary conditions. With the help of elementary transformations, we 
write system (I) in the form N = 0 where N = (N~, N=) and 

N l =  OI ,4 - - (F I ,@,OI ,~@ Fl,o~@2,~) Ol ,~ - -F iOi ,~ -~-Ko*F~O2,4 ,  

(9) 

Now we can  use  t h e  c o n d i t i o n  o b t a i n e d  i n  [8] f o r  a s y s t e m  o f  n o n l i n e a r  s e c o n d - o r d e r  d i f -  
f e r e n t i a l  e q u a t i o n s :  a f u n c t i o n a l  i n  t h e  fo rm o f  e x p r e s s i o n  (8) e x i s t s  and Eq. (1) w i l l  
correspond to the guler equations if the following condition is satisfied: 
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Nm,~ ~ ~i.Om,/k , 

Nm, oi,i =: - -  N~, om.i + 2 (Ni, o.,, ih ), h, (10) 

N~,o~ = N~ , o ~ - -  (N~ o~ i) j + (N~ ,o~,i~,i~ 

I n  o r d e r  to  examine t h e  t h i r d  c o n d i t i o n  in  (10 ) ,  one must have s p e c i f i c  forms f o r  the  
f u n c t i o n s  Fz ,  F=, P~, F . .  However,  t h i s  i s  no t  n e c e s s a r y  i n  our  ca se  b e c a u s e  t he  f i r s t  and 
second  c o n d i t i o n s  i n  (lO) g i v e  a n e g a t i v e  answer to  t he  q u e s t i o n .  I n d e e d ,  t he  f i r s t  o f  
t h e s e  e q u a t i o n s  f o r  N• in  t he  form (9) i s  no t  s a t i s f i e d  f o r  j = k = 1, 2, 3 and the  second  
i s  n o t  s a t i s f i e d  f o r  a l l  v a l u e s  o f  j .  

Thus,  a c l a s s i c a l  v a r i a t i o n a l  p r i n c i p l e  does n o t  e x i s t  f o r  t h e  comple t e  b o u n d a r y - v a l u e  
p rob lem o f  coup l ed  h e a t  and mass t r a n s p o r t  ( 1 ) - ( 5 ) ,  n o r  f o r  t he  sy s t em of  e q u a t i o n s  (1) con-  
s i d e r e d  s e p a r a t e l y .  This  n e g a t i v e  r e s u l t  does n o t  r u l e  ou t  t he  p o s s i b i l i t y  o f  u s i n g  v a r i a -  
t i o n a l  methods  i n  c a l c u l a t i n g  t h e  s o l u t i o n  t o  ( 1 ) - ( 5 ) .  These  methods c o u l d  be based  on a 
v a r i a t i o n a l  p r i n c i p l e  o f  a n o n c l a s s i c a l  t y p e .  Examples of  such v a r i a t i o n a l  e q u a t i o n s  a r e  
g i v e n  i n  [ 9 - 1 1 ] .  

NOTATION 

( ),~ (~ = i, 2, 3), partial derivative with respect to the spatial coordinate x~; ( ) ~, 
partial derivative with respect to the generalized time Fo; ( ),e i partial derivative with ' 
respect to ~i (i = i, 2); ( )*, characteristic dimensional factors;P = P(xl, x=, x~), field 
point; t, time; na, components of a unit vector along the outward normal to the bounding sur- 
face S; %q, %m, Cq, Cm, thermal conductivity, mass conductivity, heat capacity and mass 
capacity, respectively; e, phase transition criterion; 0, specific heat of phase transition; 
X, density of a perfectly dry body; ~,, ~= temperature and mass-transport potential; Pn = 
~*~IS/~=S, Posnov number; Ko* = ~*0(Cm/Cq) ~=S/~IS, modified Kossovich number; Lu = am/aq, 
Lykov number; Fo = a t, generalized time; a = ~/coy; a m = ~/CmT; e~=~i/~Is, dimension- q q 
less temperature; e~=@=/@ls , dimensionless mass-transport potential; repeated Greek indices 
ar4 summed from 1 to 3; repeated Latin indices are summed from 1 to 4; free Latin indices 
take values 1 and 2; free Greek indices take values i, 2, 3. 
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